Aufbau einer Data Science Pipeline
Maschinelles Lernen und Künstliche Intelligenz werden für den geschäftlichen Erfolg immer wichtiger. Mit der Hadoop-Plattform und Frameworks wie TensorFlow oder scikit-learn kann eine Data-Science-Umgebung sehr leicht aufgebaut werden. In stark regulierten Branchen, wie zum Beispiel der Finanzindustrie, sind vor dem produktiven Einsatz allerdings viele regulatorische und technologische Hürden zu überwinden. Dieser Artikel stellt einen erprobten Ansatz für den Aufbau einer Data Science Pipeline in einem stark regulierten Umfeld vor. Dabei werden insbesondere die unterschiedlichen Anforderungen aus dem Betrieb, der Anwendungsentwicklung und dem Data Science berücksichtigt.
0 Kommentare